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Abstract 
Understanding RNA conformational dynamics is essential to understand its roles in complex biological processes. While computational 
methods have revolutionized the prediction of static 3D RNA structures, predicting local flexibility directly from structure remains 
a significant challenge. We developed DeepRMSF, a deep learning-based method that leverages atomic-level descriptions of RNA to 
predict vibrational flexibility given a tertiary structure. Trained on MD-derived root-mean-square fluctuations(RMSF), DeepRMSF was 
benchmarked on 371 nonredundant RNAs, with 311 RNAs used for five-fold cross-validation (PCC = 0.7219–0.7464) and 60 RNAs as 
an independent test set (PCC = 0.734), ensuring minimal sequence/structural similarity between sets. DeepRMSF predicts the local 
flexibility of medium-sized RNAs (∼75 nucleotides) in ∼ 8.2 s, achieving >3000-fold speed-up over MD simulations while maintaining
strong extrapolative accuracy. Rather than replacing MD, DeepRMSF offers a scalable and practical alternative for transcriptome-scale
screening of RNA flexibility, facilitating studies on RNA structure-dynamics-function relationships and supporting computational
modeling in RNA biology.

Keywords: 3D convolutional neural network; RNA local flexibility; molecular dynamics simu lation; RNA dynamics prediction

Introduction 
The local nucleotide flexibility of RNA plays a pivotal role in 
its biological functions, as seen in processes such as its intricate 
folding during transcription, structural transitions in riboswitches 
that regulate gene expression, and the formation of various 
specialized RNA structures with distinct functions, such as
ribosomal RNA in protein synthesis or tRNA in amino acid
transport [1]. In living systems, where molecular interactions 
are inherently dynamic, RNA molecules must adapt their 
conformations to engage with other biomolecules, ensuring 
the seamless progression of essential cellular processes. Even 
when folded into stable tertiary structures optimized for specific 
functions, RNA is not static. Driven by thermal fluctuations 
under physiological conditions (∼300 K), RNA exhibits continuous 
local conformational motions around its low est-energy state.
These localized fluctuations not only characterize inherent
flexibility but also modulate the likelihood of structural rear-
rangements that influence molecular recognition and regulatory
mechanisms.

Experimental techniques used to probe local RNA flexibil-
ity include X-ray crystallography [2, 3], single-molecule fluores-
cence resonance energy transfer (smFRET) [4–8], and selective 2′-
hydroxyl acylation analyzed by primer extension (SHAPE) [9–15]. 
While these methods have greatly advanced our understanding, 
they have inherent limitations. For instance, B-factors from X-
ray structures reflect atomic displacement at low temperature 
(∼100 K) and may not represent flexibility under physiologi-
cal conditions. smFRET primarily measures distance fluctuations 
between labeled sites and is constrained by the Förster distance 
ra nge, limiting its utility for localized structural motions. These
changes make it difficult to obtain atomic-level flexibility profiles
for entire RNAs under physiological conditions.

Computational approaches have been developed to comple-
ment experimental measurements. Molecular dynamics (MDs)
simulations [16, 17] provides detailed insights into RNA motions, 
with root mean square fluctuation (RMSF) widely used to quan-
tify atomic mobility. However, MD simulations are computation-
ally expensive , especially for large RNAs. Elastic network model
(ENM)-based methods [18–28], such as the Gaussian network
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model (GNM) [21], parameter-free GNM (pfGNM) [22], and multi-
scale GNM (mGNM) [23], offer efficient approximations but may 
miss fine-scale dynamics. More recently, mac hine learning and
deep learning approaches [29–34] have shown strong potential 
in predicting molecular properties, though their application to 
RNAs re mains limited by the unique structural complexity of RNA
molecules.

Recent experimental and integrative modeling studies, partic-
ularly those by Gab Varani and Rhiju Das, have provided valuable 
insights into RNA conformational flexibility and folding dynamics 
by combining structural biology with chemical probing and
computational refinement [35–38]. These hybrids experimental-
computational approaches have substantially deepened our 
understanding of RNA dynamic landscapes and ligand-induced 
conformational changes. However, such methods often require 
extensiv e experimental effort or long simulation times for each
target RNA, which limits their scalability.

To address these limitations, we developed DeepRMSF, a fully 
automated deep learning approach for predicting atomic-level 
flexibility directly from a given RNA tertiary structure in PDB 
format. DeepRMSF integrated atomic coordinates with simulated 
density maps into a 3D convolutional neural network (U-
Net++L3) trained to predict heavy-atom RMSF values consistent 
with MD simulations. Benchmarking on a nonredundant dataset 
of 371 RNAs with diverse lengths and secondary structures 
showed that DeepRMSF achie ved high correlation with MD-
derived RMSF while being thousands of times faster than MD
simulations. This framework provides a rapid and accessible solu-
tion for RNA dynamics estimation, bridging the gap between static
structure modeling and dynamic functional characterization.

Materials and methods
DeepRMSF pipeline 
DeepRMSF is a fully automated pipeline for RNA dynamics model-
ing, consisting of two consecutive modules (Fig. 1). Starting with a 
given PDB-formatted RNA structure, the corresponding simulated 
density map was generated using UCSF Chimera [39], providing a 
volumetric representation that preserves both global architecture 
and local nucleotide environments. This map was subsequently 
segmented into a series of overlapping density boxes, enabling 
the model to focus on localized structural regions while retain-
ing contextual information from surrounding nucleotides. These
density boxes were then fed into the deep learning model, which
utilizes U-Net++ L3 [40] as the backbone architecture to capture 
multiscale spatial features through nested skip connections. The 
regression head of the network processes each density box to out-
put localized RMSF predictions, effectively mapping atomic-level 
flexibility within each region. Finally, the predicted RMSF sub-
boxes were merged via weighted averaging into a continuous and 
comprehensive RMSF map, providing a global flexibility profile for 
the RNA target. By integrating static tertiary structure information 
with volumetric density featur es and deep learning–based repre-
sentation learning, DeepRMSF bridges the gap between static RNA
structures and their dynamic behaviors, enabling accurate and
efficient predictions comparable to molecular dynamics simula-
tions but orders of magnitude faster.

Root mean square fluctua tion definition
RMSF is a widely used metric to assess the flexibility of molecular 
structures in MDs analysis and is defined as:

RMSF =
√√√√ 1 

T 

T∑
t=1

(
x(t) − x

)2

Where x(t) represents the position of the heavy atom at time t, 
and wher e x denotes the time-averaged position of that atom o ver
the simulation time T. RMSF with larger values indicating greater 
atomic displacement a nd thus higher structural flexibility.

Database of RN A structures
To build a high-quality dataset for model training and evalua-
tion, we systematically curated monomeric RNA structures from
Protein Data Bank (PDB, https://www.rcsb.org), and the RNA ter-
tiary template library was constructed in three steps: (i) Chain 
and structure filtering: Nucleic acid structures containing pro-
tein fragments, small molecules (ligands, metal ions, and water 
molecules) were excluded, retaining only standalone RNA chains. 
Any modified or noncanonical nucleosides were converted to 
their corresponding standard nucleobases to ensure consistency. 
(ii) Length filtering: RNA chains shorter than 30 nucleotides were 
removed to eliminate structural fragments and ensure sufficient 
structural complexity. (iii) Redundancy remov al: Based on the
filtered set from steps (i) and (ii), a non redundant dataset was
generated using cd-hit-est with a sequence identity cutoff of
90%. The resulting dataset contained high-quality, nonredundant,
structurally complete RNA monomers, providing a reliable basis
for downstream MD simulations and RMSF annotation.

All-atom molecular dynamics sim ulations
The initial dataset of 371 RNA structures was obtained fr om the
Protein Data Bank (https://www.rcsb.org), with sequence lengths 
ranging from 30 to 414 nucleotides (nt). To focus exclusively on 
the intrinsic structural flexibility of RNA molecules, any ligands, 
DNA, or proteins present in the complexes were remo ved prior
to simulation setup. Each RNA system was solvated in a trun-
cated octahedron box of TIP3P [41] water molecules, ensuring at 
least a 12 Å buffer distance between the solute and the edges 
of the periodic box. Based on the total charge of each RNA,
Na+ counterions were added to neutralize the system [42]. In 
addition, to better match physiological conditions, 150 mM NaCl 
was included all systems according to the screening layer tally
calculated using the SPLIT method [43]. All MD simulations were 
performed using the AMBER 20 software package [44]  with  t  he
ff99bsc0 +χOL3 force field for RNA [45] on NVIDIA Tesla A100 
GPUs. The parameters for Na+ and Cl− ions were adopted from the 
work of the Cheatham group. Energy minimization was conducted 
for 6000 steps using the conjugate gradient method. Systems 
were then gradually heated from 0 to 300 K over 400 ps under
the NVT ensemble using the Langevin thermostat, with position
restraints of 1000 kcal·mol−1·Å−2 applied to RNA heavy atoms. 
Subsequently, restraints were progressively released in five con-
secutive 1 ns stages (1000, 100, 10, 1, and 0 kcal·mol−1·Å−2) under 
the NPT ensemble (P = 1 bar, T = 300 K). The equilibrated systems 
were subjected to 200 ns production MD simulations at constant 
temperature (300 K) and pressure (1 bar) using periodic boundary
conditions and the particle mesh Ewald (PME) method. Further
simulation details are provided in Section S2.

RMSD convergence and MD sim ulation
equilibrium
To evaluate the equilibrium state of each RNA system, we 
assessed the convergence of RMSD values over the simulation 
time. Specifically, the initial 40 ns of each trajectory was discarded 
to remove the equilibration phase, and RMSD values were 
calculated separately for the 40–120 ns and 120–200 ns segments. 
The Pearson correlation coefficient between these two segments
was computed for each RNA. A high correlation indicated that the
RMSD profile had effectively converged, reflecting stable dynamic
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Figure 1. Overview of the DeepRMSF framework for RNA dynamics prediction. (a) The DeepRMSF workflow integrates sequence-derived secondary 
structure, 3D atomic coordinates, and simulated electron-density maps as input features. Each RNA structure is converted into voxelized density boxes 
that retain both global and local spatial information. (b) Architecture of the DeepRMSF model. The network employs a three-level nested 3D U-Net++ 
(L3) architecture consisting of encoder and decoder paths with multiscale skip connections. Input tensors (4 channels: density, nucleotide type, index, 
and pairing status) pass through convolutional blocks for spatial feature extraction, followed by a 3-layer convolutional regression head that outputs 
per-voxel RMSF predictions. The model is trained in a supervised manner against MD-derived RMSF ground truth to learn the relationship between local
structural context and nucleotide flexibility.

behavior(see details in the RMSD definition section). In addition, 
to illustrate the robustness of the MD simulations across the 
dataset, we randomly selected 50 RNAs from the total of 371 and
examined their RMSF variation over time. The results, shown in
Supplementary Fig. S1, demonstrate stable RMSD convergence 
profiles and consistent equilibration behavior across the sampled 
RNAs, confirming that the trajectories had reached equilibrium
prior to RMSF calculation.

Qualitative comparison between MD-derived 
RMSF and crystallographic B-factors
We qualitatively compared RMSF obtained from MD simulations 
with crystallographic B-factors reported in the Protein Data Bank. 
Only atoms with nonzero B-factor values were included in the 
analysis. The B-factors were converted to estimated RMSF values
using the standard equation:

RMSF =
√

3 × B − factor 
8 π2

Because crystallographic B-factors are measured in the solid 
state at cryogenic temperatures, whereas MD simulations model 

solvated molecules at room temperature, the two datasets rep-
resent fundamentally different thermodynamic conditions. This 
comparison was therefore performed solel y to assess whether
regions of high and low flexibility exhibited similar spatial pat-
terns, rather than to derive quantitative agreement.

Across the analyzed RNA samples (Supplementary Fig. S4), 
Pearson correlation coefficients between MD-derived and B-
factor-derived RMSF values varied substantially (∼−0.6–0.8), 
reflecting differences in structural stability among RNAs. Highly 
dynamic RNAs, such as hairpin loops (PDB ID: 1YXP), tended 
to show weaker correspondence, whereas more rigid RNAs, 
such as multihelix junctions (PDB ID: 3LA5), exhibited stronger 
agreement. All predictive performance evaluations in this study 
w ere benchmarked exclusively against MD-derived RMSF to
maintain a consistent dynamic reference and to avoid systematic
bias arising from differing experimental conditions.

Input embedding 
In the data preparation module, we first used UCSF Chimera to 
convert each RNA PDB model into a simulated electron density 
map with a resolution of 4 Å and a grid spacing of 1.5 Å. Each den-
sity map was subsequently partitioned into a series of cubic boxes
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of size 40×40×40 voxels. This box size was selected to ensur e that
the central 10 × 10 × 10 voxels, which corresponds to the region 
for which RMSF values were predicted, captured all possible local 
atomic and nucleotide interactions. The box size was also chosen 
to balance structural co verage with computational complexity in
the neural network. Consequently, each density map was split into
multiple 40 × 40 × 40 boxes with a stride of 10 voxels, generating 
overlapping regions that preserve structural continuity.

To enhance model performance, additional RNA structural 
information was incorporated. We tested several feature com-
binations and ultimately selected nucleotide type, nucleotide 
index, and secondary structure pairing status as auxiliary inputs.
Secondary structure was assigned using x3DNA-DSSR [41]. For 
simplicity and to avoid overcomplicating the feature space, we 
distinguished only whether each nucleotide was base paired: 
atoms in paired nucleotides were labeled as 0, and atoms in 
unpaired nucleotides were labeled as 1. Nucleotide types (A, U, 
C, G) were extracted from the PDB files and encoded as integers 
(0 = A, 1 = U, 2 = C, 3 = G), then transformed into one-hot vectors. 
Nucleotide indices were similarly extracted and encoded to 
represent the sequential position o f each nucleotide in the chain.
Finally, the same box-splitting operation used for the density
maps was applied to these structural feature maps. Boxes at
corresponding positions were concatenated along the channel
dimension, producing the multichannel input tensors for the
deep learning model.

Network 
In the dynamics modeling module, DeepRMSF employs a three-
level nested U-Net++ (L3) architecture as the backbone, consist-
ing of an encoder and a decoder structure designed for multi-
scale feature extraction. Each convolution block in the U-Net++ 
contains two convolution layers, each followed by batch normal-
ization and a Rectified Linear Unit (ReLU) activation function. 
The multichannel input tensors, formed by concatenating four 
feature maps(density, nucleotide type, nucleotide index, and sec-
ondary structure pairing status), are processed through three 
down-sampling blocks in the encoder to enhance robustness
and enlarge the receptive field. The decoder then restores these
features to the original spatial resolution through a series of up-
sampling blocks, while extracting and fusing multiscale features
from intermediate layers.

A regression head consisting of three convolutional layers is 
attached to the backbone to predict RMSF values. ReLU activation 
is applied in each layer, and a dropout layer is inserted after 
the first convolutional layer to prevent overfitting. For each RNA, 
model performance was evaluated by calculating the Pearson 
correlation coefficient between the MD-derived RMSF values and 
the predicted RMSF values for all atoms. Finally, the predicted
RMSF sub-boxes were reassembled into a full RMSF map as the
final output for each RNA, and visualization of the results were
visualized using UCSF ChimeraX.

Training data and procedure
A 5-fold cross-validation strategy was employed to maximize 
dataset utilization and improve model generalization. The net-
work was trained for a maximum of 100 epochs with a batch size 
of 16. The Adam optimizer was used for gradient descent with an 
initial learning ra te of 4e-3. Model training was conducted on two
NVIDIA A100 GPUs, requiring ∼7–10 h per fold, while inference on
a single RNA structure took only a few seconds.

To ensure a robust and unbiased estimate of model perfor-
mance, we adopted a repeated 5-fold cross-validation strategy. 

Specifically, the dataset of 311 RNAs was randomly partitioned 
into five folds, ensuring that RNAs sharing >80% sequence iden-
tity or a TM-score > 0.45 were assigned to the same fold. This 
procedure was repeated 10 times using different random seeds, 
resulting in 50 independent training and validation runs (10 × 5 
CV). Such repetition captured both tr aining stochasticity and
variability due to data partitioning. The final performance was
reported as the mean ± standard deviation of the Pearson correla-
tion coefficient (PCC), mean absolute error (MAE), and root mean
square error (RMSE) across all runs.

Results 
Robust performance across cross-validation and 
external test set
We partitioned 311 RNAs into five cross-validation folds, ensuring 
that RNAs sharing > 80% sequence identity and a TM-score > 0.45
[46] was assigned to the same fold. An independent test set of 
60 RNAs was selected with <60% sequence identity and a TM-
score < 0.45 r elative to any RNA in the training folds (details are
provided in Supplementary Section S2 and Fig. S2). Across the ten 
repetitions of 5-fold cross-validation, DeepRMSF achieved stable 
and consistent performance, with an average Pearson correlation 
coefficient (PCC) of 0.716 ± 0.011, MAE of 0.091 ± 0.004, and root
mean square error (RMSE) of 0.107 ± 0.005 (Fig. 2A and Fig. S3). 
These results demonstrate that DeepRMSF maintains reliable pre-
dictive accuracy across different random initializations and data 
splits, highlighting its robustness against partitioning variability.

To further evaluate the model’s generalization ability, we 
assessed its predictions on the inde pendent test set comprising
60 RNAs. As shown in Fig. 2B, the best-performing model 
among the 10 runs (PCC = 0.736 on validation) achieved a 
strong correlation (PCC = 0.734) between predicted and MD-
derived RMSF values. This fine-grained agreement indicates that 
DeepRMSF effectively captures both global and local patterns of
RNA flexibility, closely approximating the dynamics observed
from long-timescale MD simulations. Figure 2C presents the 
computational efficiency of DeepRMSF. While conventional 
molecular dynamics requires extensive computational resources 
and multiple hours to simulate a single RNA molecule, DeepRMSF 
predicts per-nucleotide RMSF values in only ∼8.2  s  per  RNA.  The  
largest RNA in our dataset (414 nucleotides) was processed in 33 s, 
compared to ∼1 w eek of MD simulation. These results underscore
DeepRMSF’s potential as a scalable and practical alternative to
MD simulations, enabling transcriptome-scale modeling of RNA
dynamics in a fraction of the time.

To assess robustness with respect to input structure quality, 
we compared predictions generated from PDB-initial versus MD-
equilibrated structures for 20 representative RNAs from the inde-
pendent test set. The average PCC was 0.709 for PDB-initial inputs
and 0.716 for MD-equilibrated inputs (Fig. S5), demonstrating that 
DeepRMSF maintains strong predictive performance even when 
relying on experimentally determined PDB structures. This high-
lights its practical utility for large-scale RMSF prediction across
diverse RNAs.

To demonstrate that DeepRMSF outperforms coarse-grained 
traditional methods (GNM and pfGNM), we compare them. Since 
three of the 371 systems do not contain P atoms , we evaluated
the PCC values of GNM and pfGNM based on the remaining 368
systems (see Table S1). According to the average PCC values, Deep-
RMSF (0.719 ± 0.02) significantly outperforms GNM (0.441 ± 0.3)
and pfGNM (0.490 ± 0.326).
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Figure 2. Evaluation of DeepRMSF performance, accuracy, and runtime scalability across RNA datasets. (a) Model performance in terms of Pearson 
correlation coefficient (PCC), mean absolute error (MAE), and root mean square error (RMSE) averaged over 10 repetitions of 5-fold cross-validation 
(10 × 5 CV). Error bars represent the standard deviation across 50 independent training and validation runs, capturing both model stochasticity and 
data-partition variability. (b) Correlation between predicted and MD-derived RMSF values across the independent test set (60 RN As). A strong linear
relationship (PCC = 0.734) indicates high predictive accuracy at the atomic level. (c) Runtime required by DeepRMSF to predict RMSF as a function of
RNA length, showing near-linear scalability and a substantial computational advantage compared to MD simulations.

Impact of input feature combinations on root 
mean square fluctuation prediction
To assess the combinations of sequence and structural features, 
we benchmarked three input configurations under five-fold cross-
validation: (i) nucleotide type together with density map, (ii) 
nucleotide type and nucleotide index combined with the sim-
ulated map, and (iii) nucleotide type, nucleotide, and secondary
structure information combined with density map (Fig. 3A). The 
baseline model utilized only nucleotide type and simulated 
density map achieved an average PCC of 0.727(MAE = 0.0892, 
RMSE = 0.1066). When nucleotide index was added to the input 
feature set, slightly decreased to 0.721, suggesting that position 
specific information alone did not enhance prediction accuracy 
and may have introduced redundancy. Incorporating secondary 
structure annotations led to the best overall performance, 
with an a verage PCC of 0.7331, the lowest average MAE (0.086)
and RMSE (0.1011), and reduced variance cross folds. These
results indicate improved robustness and generalizability when
secondary structure features are included.

We further examined a representative riboswitch RNA (PDB ID: 
4FEP) to visualize the impact of feature combinations (Fig. 3B). 

RMSF values predicted by the three models were mapped onto 
the RNA 3D structure. The model using only nucleotide type and 
simulated map underestimated flexibility in dynamic regions, 
particularly within loops and junctions. In contrast, the full fea-
ture model, which included nucleotide type, nucleotide index, 
simulated map and secondary structure produced predictions 
that closely matched the MD-derived ground truth. In particular, 
a highly flexible loop region was accurately captured only when 
secondary structure information was incorporated. Collectively, 
these findings collectively demonstrate that enriching the input
representation with position-specific and structural information
significantly improves both the accuracy and reliability of RMSF
prediction. Such improvements are especially critical for model-
ing localized flexibility in functionally important RNA motifs.

Case studies reveal DeepRMSF’s ability to targets
with complex structures
To assess the robustness and generalization ability of DeepRMSF 
across RNAs with varying lengths and structural complexities, we 
selected three representative RNAs: yeast tRNA (PDB ID: 3TRA, 64
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Figure 3. Impact of input feature combinations on RNA RMSF prediction performance. (a) Benchmarking results of DeepRMSF using three different 
input feature combinations: type+map, type+index+map, and type+index+ss + map, evaluated via 5-fold cross-validation. (b) Structural visualization 
of RMSF predictions for the ribos witch RNA (PDB ID: 4FEP). The RMSF values predicted by the three models are mapped onto the RNA tertiary structure.

nts), the SAM-I riboswitch (PDB ID: 2GIS, 145 nts), and the Tetrahy-
mena group I intron ribozyme (PDB ID: 1X8W, 248 nts). These RNAs 
represent distinct structural motifs and topological organizations, 
ranging from compact tRNA scaffolds to large catalytic ribozymes.
As shown in Fig. 4, DeepRMSF predicted nucleotide-level flex-
ibility profiles that closely matched MD-derived RMSF values, 
with PCCs of 0.7925, 0.74009, and 0.8007 for 3TRA, 2GIS, and 
1X8W, respectively. These results indicate that DeepRMSF reliably 
captures both rigid and flexible regions across diverse RNA archi-
tectures. The results indicate that DeepRMSF reliably captures 
both rigid and flexible across diverse RNA architectures. First, a 
64-nucleotide yeast tRNA (PDB ID: 3TRA) was analyzed to evaluate 
the prediction accuracy of DeepRMSF on a compact, functionally 
conserved RNA. This tRNA(Asp) forms a dimer in the crystal, 
featuring four canonical helices, several highly structured loops 
and junctions. DeepRMSF accurately predicted flexible regions in 
the D-loop and T-loop, which are known to undergo dynamic shifts 
depending on base stacking and twist angle propagation from the 
anticodon loop. In particular, the tertiary contact between G19 
in the D-loop and C56 in the T-loop is known to be more labile
in the dimeric Asp tRNA than in Phe tRNA, which is consistent
with the observed fluctuation patterns. Our predictions reflect
this behavior, showing increased flexibility in the D and T loops,
and reduced motion in the anticodon region, as also observed
in MD simulations. The high PCC (0.7925) confirms DeepRMSF’s

ability to reproduce such dynamic behavior with atomic-level
resolution.

Second, the S-adenosylmethionine (SAM) riboswitch (PDB ID: 
2GIS, 145 nts) contains a compact architecture organized by four 
paired stems (P1–P4), interlinked by joining regions and a pseu-
doknot. The L2 loop and junctions J3/4 and J4/1 form ligand-
independent tertiary contacts, establishing a prefolded architec-
ture even in the absence of SAM. Upon SAM binding, the P1 
helix is stabilized through hydrogen bonding and van der Waals
interactions with the P3 and J1/2 region. DeepRMSF successfully
predicted low flexibility around this ASM-binding pocket, con-
sistent with its structural compactness and in-line probing data.
The 5′ region of P4, which remains single-stranded after folding, 
showed the highest RMSF peaks, reflecting its inherent flexibility. 
The correlation between prediction and MD results reac hed a PCC
of 0.74009, demonstrating strong predictive accuracy for complex
ligand-binding RNAs.

Last, the Tetrahymena thermophila group I intron ribozyme 
(PDB ID: 1X8W, 248 nts) adopts a well-organized tertiary structure 
critical for RNA self-splicing. It folds into two domains: P4–P6 and 
P3–P9, which pack against each other to organize the active site, 
including the G-binding site (G-site) in P7. Multiple base triples 
and a catalytic magnesium ion stabilize the active site, even
in the absence of substrate RNA. DeepRMSF accurately identi-
fied regions of flexibility, particularly the external loops and the
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Figure 4. DeepRMSF performance for three RNAs. RMSF predictions for yeast tRNA (PDB ID: 3TRA, 64 nts), SAM-I riboswitch (PDB ID: 2GIS, 145 nts) and 
Tetrahymena group I intron ribozyme (PDB ID: 1X8W, 248 nts). Colors represent normalized RMSF values, as indicated by the color bar on the right. The 
first row is colored based on DeepRMSF predictions, while the second row sho ws the ground truth RMSF derived from molecular dynamics simulations. 
The third row plots the normalized RMSF values along the nucleotide sequence for each RNA, comparing DeepRMSF predictions (purple lines) with
MD-based ground truth (orange lines).

G-site entry, while capturing stable core structure. The overall 
correlation with MD simulations reached a PCC of 0.8007, high-
lighting its ca pability to model dynamics in large and catalytically
active RNAs.

We loaded the ligand positions from the PDB into the structure 
mapped by DeepRMSF and found that most of the flexible regions
are the binding sites of the ligands (see Fig. S6), especially the 
magnesium ion. DeepRMSF predictions align with functional
motifs.

Collectively, these case studies demonstrate that Deep-
RMSF consistently reproduces atomic-level flexibility patterns 
across RNAs of varying sizes and architectures. The method 
maintains high accuracy even for large RNAs with intricate 
tertiary folds, offering a scalable and computationally efficient
alternative to long time scale MD simulations for RNA dynamics
analysis.

DeepRMSF standalone 
Tool input 
DeepRMSF is available as a standalone offline tool that allows 
users to run the program locally on their own computers(Fig. 5). 
To the best of our knowledge, DeepRMSF is the first standalone 

tool dedicated to fast and accurate prediction of local nucleotide 
flexibility for a given fixed RNA tertiary structure, r ather than
simulating long time scale global conformational changes. The
required input is an RNA tertiary structure in PDB format.

Tool output 
For RNA structures shorter than 1000 nucleotides, the program 
typically finishes within minutes. The DeepRMSF results consist 
of the following three sections: (i) sequence in FASTA format 
obtained from the input structure, which provides the sequence 
information clearly; (ii) secondary structure in dot-bracket 
notation, which summarizes base-pairing and overall secondary 
structure of the input model; (iii) predicted RMSF: first, the 
user can inspect a line plot of the predicted RMSF, from 
which the positional fluctuation level of each atom can be 
examined. Then, two structure files named {pdbid}.pdb and
{pdbid}_pre_nor.pdb are provided. {pdbid}.pdb is the original
input structure. {pdbid}_pre_nor.pdb is the same structure
annotated with predicted RMSF. These files can be visualized with
UCSF Chimera or UCSF ChimeraX. For quantitative evaluation
and comparison across systems, RMSF values in Å should be
used.
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Figure 5. Illustration of the DeepRMSF output, including sequence information and secondary structure extracted from input structure in PDB format. 
And the dynamics predicted results for all atom among this structure. Finally, the input 3 D model, simulated maps translated by input structure and
predicted dynamics structure showed by UCSF Chimera and UCSF ChimeraX.

Discussion 
We developed and validated DeepRMSF, a fully automated 
and computationally efficient method for predicting atomic-
level flexibility from RNA tertiary structures in PDB format. 
The method converts input PDB models into simulated maps, 
segments them into local density boxes, and processes them
using a 3D voxel-based convolutional neural network (U-Net++
L3) with structural encoding. A regression head then outputs
atom-level RMSF values.

DeepRMSF was trained and evaluated on 371 nonhomologous 
RNAs, each simulated for 200 ns of all atom molecular dynamics 
under explicit solvent conditions. For these targets, the method 
achieved an average PCC of 0.733 with MD-derived RMSF, while 
requiring only seconds for inference. This balance between accu-
racy and computational efficiency makes DeepRMSF particularly 
suitable for large-scale local flexibility screening, where long 
time scale MD simulations would be computationally prohibitive .
Furthermore, the neural network framework can be extended
to model RNA–protein interactions and RNA complexes, offering

new opportunities to elucidate the molecular and cellular func-
tions of noncoding RNAs. Studies along these lines are currently
underway.

To further enhance the biological relevance of flexibility 
prediction, future work will incorporate RNA-ligand molecu-
lar dynamics simulations into future model training. While 
DeepRMSF demonstrates robust performance for intrinsic RNA 
flexibility, it does not yet account for ligand-induced conforma-
tional changes. Accurate modeling of RNA–ligand systems poses 
specific challenges, including: (i) the need for extended simulation 
timescales to capture binding-induced motions; (ii) the require-
ment for accurate parameterization of diverse ligand chemistries; 
and (iii) the increased computational cost associated with RNA– 
ligand complexes simulations. To address these limitations, future 
development work will explore enhanced sampling strategies and
refined force fields to better capture ligand-dependent flexibility.
Collectively, these planned extensions will enable DeepRMSF to
model functional RNA motifs such as riboswitches and aptamers,
thereby broadening its application to RNA structural biology and
RNA-targeted drug discovery.
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Key P oints

• DeepRMSF predicts atom-level root mean square fluc-
tuation(RMSF) directly from RNA tertiary structure, 
achieving high accuracy with markedly reduced com-
putational cost compared to molecular d ynamics (MD)
simulations.

• The method integrates simulated electron density maps 
with nucleotide type, index, and secondary structure 
features into a 3D U-Net++(L3) arc hitecture for multi-
scale feature extraction and r obust RMSF prediction.

• Benchmarking on 371 nonredundant RNAs shows con-
sistent performance in five-fold cross-validation and 
independent test sets, with Pearson correlation coeffi-
cients above 0.73 and over 3000-fold speed-up r elative
to MD.

• Case studies on tRNA, riboswitch, and ribozyme high-
light the framework’s ability to capture rigid and flex-
ible regions across diverse RN A architectures, enabling 
scalable transcriptome-wide RNA d ynamics analysis.
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